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Abstract: We study the thermodynamics of large N pure 2+1 dimensional Yang-Mills

theory on a small spatial S2. By studying the effective action for the Polyakov loop order

parameter, we show analytically that the theory has a second order deconfinement transi-

tion to a phase where the eigenvalue distribution of the Polyakov loop is non-uniform but

still spread over the whole unit circle. At a higher temperature, the eigenvalue distribution

develops a gap, via an additional third-order phase transition. We discuss possible forms

of the full phase diagram as a function of temperature and sphere radius. Our results

together with extrapolation of lattice results relevant to the large volume limit imply the

existence of a critical radius in the phase diagram at which the deconfinement transition

switches from second order to first order. We show that the point at the critical radius

and temperature can be either a tricritical point with universal behavior or a triple point

separating three distinct phases.
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1. Introduction

In this note, we follow [1] to study the thermodynamics of large N pure 2+1 dimensional

Yang-Mills theory on a spatial S2 with radius much smaller than the scale set by the

dimensionful coupling of the gauge theory. In this limit, the dimensionless coupling λR =

g2NR is small, so the thermodynamics can be studied in perturbation theory. The thermal

partition function is given by the path integral for the Euclidean theory on S2 ×S1, where

the S1 has radius given by the inverse temperature β = T−1. From this path integral

expression, we integrate out all modes apart from the trace of the Polyakov loop,1

u =
1

N
Tr (U) =

1

N
Tr Pei

R
S1 A ,

1Here A is averaged over the S2.
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Figure 1: Distribution of Polyakov loop eigenvalues on unit circle (horizontal axis) in confined

phase (a), in gapless phase above second order deconfinement transition (b), at third-order gapping

transition (c), and in high-temperature gapped phase (d).

giving us an effective action for u, the standard order parameter for confinement. For small

u, this effective action takes the form

Seff(u) = f(T, λ)|u|2 + λ2b(T )|u|4 + O(λ4) . (1.1)

For low temperatures, f is positive, and so the saddle-point configuration has u = 0.

At some temperature TH = T 0
H + O(λ) , f becomes negative, so u = 0 is no longer the

minimum action configuration. The three-loop calculation in this paper shows that the

coefficient b is positive at the critical temperature, so as f becomes negative, |u| develops

an expectation value gradually, resulting in a second-order phase transition.

The situation here is in contrast to the 3+1 dimensional case, where the analogous

calculation [1] revealed a negative value for b(TH). In that case, the deconfinement tran-

sition is first order, characterized by a discontinuous change in the eigenvalue distribution

for the unitary matrix U from the uniform distribution (eigenvalues equally distributed

around the unit circle) to a non-uniform distribution with a gap (i.e. a region of the circle

where no eigenvalues are present). In terms of the eigenvalue distribution, the continuous

transition we find here corresponds to a continuous change from the uniform distribution

to an increasingly non-uniform distribution. As argued in [2], at a temperature

T2 = TH +
1

2
λ2b(TH)/f ′(TH)

the minimum value of the eigenvalue density will reach zero, as depicted in figure 1, and

the eigenvalue distribution will develop a gap for higher temperatures. This results in an

additional third-order phase transition of Gross-Witten type, so the phase diagram for pure

Yang-Mills theory on S2×S1 contains at least three distinct phases (uniform, non-uniform,

gapped).

The basic setup for our calculation and the calculation itself are presented in sec-

tions 2 and 3 of this paper. We then consider the implications of our results for the full

phase diagram as a function of temperature and spatial radius. In section 4, we argue

that in the high-temperature limit for fixed radius the theory effectively reduces to pure

two-dimensional Yang-Mills theory on a spatial S2. This theory has a third order phase

– 2 –
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transition as the radius of the sphere is varied [3], suggesting that our phase diagram has

an additional third order transition line coming from large temperature along the curve

TR ∼ 1/(λR) .

It is tempting to conjecture that this third-order transition line connects up with the one

emerging from the critical temperature at small radius (as in figure 6b). Indeed, these are

qualitatively very similar: while the latter transition is associated with the development of

a gap in the eigenvalue distribution for the Polyakov loop, the two-dimensional Yang-Mills

theory transition is associated with the development of a gap in the eigenvalue distribution

for the Wilson loop around the equator of the sphere (or any other maximal-area non-

intersecting loop) [4]. On the other hand, we have not been able to show any direct

relation between the two order parameters (which we can choose to be the minimum value

of the eigenvalue density for these two Wilson loops). Further, it is possible that the high

temperature transition ceases to be sharp as we decrease the temperature.

In section 5, we consider the fate of the actual deconfinement transition line as the

radius is increased and the possible forms for the full phase diagram. At large volume,

we can appeal to lattice results, which for finite N suggest that there is a second order

deconfinement transition for N = 2, 3 (and possibly N = 4), a weak first order transition

for N = 5 and a stronger first-order transition for N = 6 [5]. It is believed that the

transition should continue to strengthen as N is increased. If this is correct, the large

N theory would be expected to exhibit a first order deconfinement transition, and there

must be a point along the deconfinement transition line at some critical radius, where the

deconfinement transition switches from second order to first order. We argue that there are

two qualitatively different behaviors of the Polyakov loop effective potential that can lead

to such a point. These correspond either to a tricritical point at which both quadratic and

quartic terms in an effective action vanish, or to a triple point, separating three distinct

phases. The simplest possible phase diagrams consistent with the available information are

presented in figure 6.

We conclude in section 6 with a few comments on the implications for a possible

gravitational dual theory of the existence of three distinct phases.

2. The set up

In this section we will briefly review the results and techniques developed in [1, 6, 2] and

apply them to analyze the thermodynamic properties of 2 + 1 dimensional, large N pure

Yang-Mills theory living on a two-sphere of radius R. Asymptotically free gauge theories

become weakly coupled at small volume, in this case when λR = g2NR ≪ 1. This is

because all modes with the exception of the constant mode of A0 on S2 × S1 (which we

denote by α), are massive, with masses ≥ 1/R. We thus have an effective IR cutoff on the

renormalization group flow of the coupling g2
YMN (see for example [2]). The massive modes

may be integrated out directly in perturbation theory, yielding an effective action for the

zero-mode α, or more precisely, for the constant SU(N) matrix U = eiβα. The result of [2]

shows that in the large N limit, the matrix model undergoes a Hagedorn-like transition at
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some critical temperature, which corresponds to a deconfinement transition in the gauge

theory. We note that the large N limit is essential for the theory on a compact manifold

to exhibit a sharp phase transition.

2.1 Basic setup

The thermal partition function of pure SU(N) Yang-Mills theory on S2 at temperature T

can be evaluated by the Euclidean path integral of the theory on the manifold S2 × S1,

with the radius of the circle S1 equal to β = 1
T . The action of the theory is:

L =
1

4

∫ β

0
dt

∫
d2xTr (FµνFµν). (2.1)

To perform this computation we will work in the gauge:

∂iA
i = 0 (2.2)

where i = 1, 2 runs over the sphere coordinates, and ∂i are (space-time) covariant deriva-

tives.

This does not completely fix the gauge, as we can still make spatially independent

gauge transformations. To completely fix the gauge we also impose

∂t

∫

S2

A0 = 0. (2.3)

so we choose the constant (on the sphere) mode of A0 to be independent of time. We

define:

α =
gYM

ω2

∫

S2

A0, (2.4)

where ω2 is the volume of the 2-sphere.

The mode α is a zero mode of the theory which is always strongly coupled and cannot

be integrated out perturbatively. Because of this, we will compute the path integral of

the theory in two steps. First we will integrate out all other modes which are massive to

generate an effective action for the zero mode α. Then we will analyze the effective action

for α. In other words, we will do the path integral in the following order:

Z =

∫
DAdα e−S[A,α] =

∫
dα

∫
dAe−S[A,α] =

∫
dα e−Seff [α] (2.5)

As explained in [2] the effective action for α can be written completely in terms of the

unitary matrix U ≡ eiβα in the form:

Seff =
∑

m

Cm,−mTr(Um)Tr(U−m) + λβ
∑

m,n

Cm,n,−m−nTr(Um)Tr(Un)Tr(U−m−n)/N

+λ2β
∑

m,n,p

Cm,n,p,−m−n−pTr(Um)Tr(Un)Tr(Up)Tr(U−m−n−p)/N2 + . . . (2.6)
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Then the free energy of the theory is given by the matrix integral:

Z(β) = e−βF =

∫
[dU ]e−Seff (U) (2.7)

where, as discussed in [2], the Fadeev-Popov determinant of the gauge fixing transforms the

integral over α to an integral over the gauge group with Haar measure [dU ]. Note U is the

holonomy of the gauge field around the temporal circle. We thus have an effective action

for the temporal Wilson loop, whose expectation value is the standard order parameter for

the deconfinement transition.

In the large N limit, we can evaluate the integral using saddle point techniques. In-

troducing the eigenvalue distribution ρ(θ) =
∑

i δ(θ − θi)/N where θi are the eigenvalues

of α, i = 1 . . . N and defining un =
∫

dθρ(θ)einθ = Tr(Un)/N the effective action takes the

form:

Z[β] =

∫
[dun][dūn]e−N2S′

eff
[un,ūn;β,λ] (2.8)

with

S′
eff =

∑

m

(1/m − Cm,−m)umūm + λβ
∑

m,n

Cm,n,−m−numun ¯um+n

+λ2β
∑

m,n,p

Cm,n,p,−m−n−pumunup ¯um+n+p + . . . (2.9)

where the extra 1/m comes from the Vandermonde determinant obtained in going to the

variables un.

Note that un = 0 is a stationary point at all temperatures. It corresponds to the

uniform distribution of the eigenvalues of U . The stability of this saddle point depends on

the values of the coefficients Cn,m,.... As we will show in the next subsection, the coefficient

of |u1|2 is positive at small T but becomes negative as we increase the temperature. This

signals that the un = 0 phase becomes unstable and the system undergoes a phase transi-

tion. As explained in [2], near the transition temperature the u1 mode becomes massless,

while the un>1 modes remain massive. We will further integrate out these higher moments

to obtain an effective action for u1 near TH to analyze the order of the phase transition.

To achieve this we will need the coefficient of the quartic term in u1. The relevant terms

in (2.9) are:

S′
eff = (1 − C1,−1)|u1|2 + (1/2 − C2,−2)|u2|2 + . . .

+λβ[C1,1,−2(u
2
1ū2 + u2ū1

2) + . . .] + λ2βC1,1,−1,−1|u1|4 + . . . (2.10)

For the saddle point configuration, the higher modes un are determined by minimizing

the effective action over un for fixed u1, so we have

u2 = −λβ
C1,1,−2

(1/2 − C2,−2)
u2

1 + O(λ2) (2.11)

This gives the effective action:

S′
eff(u1) = (1 − C1,−1)|u1|2 + λ2βbc|u1|4 + . . . (2.12)
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where

bc = −β2C1,1,−2(β)2/(1/2 − C2,−2(β)) + βC1,1,−1,−1 + O(λ) (2.13)

As discussed in [2], the sign of b evaluated at the critical temperature determines

the order of the phase transition. If bc < 0 the transition is first order and occurs at

the Hagedorn temperature TH at zero coupling, but slightly below TH at small but finite

coupling (they are the same up to order λ2). If bc > 0 there are two phase transitions. The

first one occurs at exactly TH and is second order, while the second one is a Gross-Witten

type third order phase transition happening above TH . The third order phase transition

occurs at the point where the eigenvalue distribution of U develops a gap. Our goal will

be to compute the coefficients Cn,m,... to the appropriate order in perturbation theory to

obtain bc. The C2,−2 requires a one loop calculation, while C1,1,−2 and C1,1,−1,−1 require

two and three loop calculations respectively.

2.2 One loop free energy

It is shown in [2] that the coefficient Cm,−m can be extracted by computing the one loop

partition function of the theory. It turns out that:

Cm,−m = −zV (xm)

m
(2.14)

where x = e−β/R and zV (x) is the single particle partition function

zV (x) =
∑

△

n(△)x−β△ (2.15)

In our case △2 are the eigenvalues of the Laplacian on the unit two sphere acting on the

vector spherical harmonics surviving the gauge fixing, while n(△) is the multiplicity of

each mode. More specifically △2
h = h(h + 1) , n(△h) = 2h + 1, h = 1, 2, . . . The Hagedorn

temperature is determined by the point where the u1 mode become unstable:

zV (xc) = 1 (2.16)

We are not able to get a closed form for zV (x), but numerically we find:

xc ≃ 1.195097 (2.17)

so the Hagedorn temperature of the free theory on a two-sphere of radius R = 1 is:

TH ≃ 0.302675 (2.18)

Similarly,

C2,−2 = −zV (x2
c)

2
= 0.38155 (2.19)
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2.3 Gauge fixed action

Formally, the thermal partition function is of the form

Z[β] =

∫
[dα][dA′

0][dAi]△1△2e
−S[α,A′

0
,Ai;β] (2.20)

where △1, △2 are the Fadeev-Popov determinants associated with (2.2) , (2.3) respectively

and β = 1/T is the size of the time circle. The prime on A′
0 signals that the constant mode

has been removed. As shown in [2], △2 can be combined with [dα] to give the integration

measure of a unitary matrix [dU ] with U = eiβα. On the other hand, △1 is

det ∂iD
i =

∫
(∆)c(∆)c̄e−Tr (c̄∂iD

ic) (2.21)

where Di denotes a gauge covariant derivative

Dic = ∂i − igYM[Ai, c] (2.22)

and c and c̄ are complex ghosts in the adjoint representation of the gauge group. With our

gauge choice, the quadratic terms in the Yang-Mills action (2.1) take the form

−
∫

d3xTr

(
1

2
Ai(D̃

2
0 + ∂2)Ai +

1

2
A′

0∂
2A′

0 + c̄∂2c

)
(2.23)

where

D̃0X ≡ ∂0X − i[α,X]. (2.24)

The interaction terms in (2.1) are given by

∫
d3xTr (igYMD̃0Ai[Ai,A

′
0] − igYM[Ai,A′0]∂iA

′
0 − igYM∂iAj[A

i,Aj]+

g2

YM

4 [Ai, Aj ][A
j , Ai] − g2

YM

2 [A′
0, Ai][A

′0, Ai] − igYM∂ic̄[Ai, c]). (2.25)

We wish to obtain the effective action by

e−Seff [U ;β,λ] =

∫
[dc][dA′

0][dAi]e
−S1loop < e−Sint > . (2.26)

The result is an effective theory for a constant SU(N) matrix U = eiβα

Z[β] =

∫
[dU ]e−Seff [U ;β,λ]. (2.27)

3. The perturbative calculation

In this section, we summarize the computation of the two and three loop diagrams. As

we are on S2, it will be convenient to expand the fields in terms of the vector and scalar

spherical harmonics on S2. As a result, the spatial momentum integrals in the Feynman

diagrams can be replaced by sums over the quantum numbers of the generators of SU(2).

We will first set up the conventions that facilitate the computation.

– 7 –
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3.1 Spherical harmonics expansion on S2

The basic set-up for the computation was described in section 2 of [2]. As in the 3+1 case, it

will be useful to write the action explicitly in terms of a set of spherical harmonic integrals.

We will denote the scalar and vector spherical harmonics on S2 by Sα(θ) and V β
i (θ), where

α = (jα,mα) and β = (jβ ,mβ) are the SU(2) quantum numbers for the various modes.

Our conventions for the vector spherical harmonics can be found in appendix A. Note for

Sj,m and V j,m
i the j quantum number starts at j = 0, j = 1, respectively. In terms of

these, we have:

A′
0(t, θ) =

∑

α

aα(t)Sα(θ);

Ai(t, θ) =
∑

β

Aβ(t)V β
i (θ);

c(t, θ) =
∑

α

cα(t)Sα(θ). (3.1)

We will denote the complex conjugate of Sα by Sᾱ. On S2, the complex conjugation

for scalar spherical harmonics is the same as inverting the sign of mα and multiplying by

(−1)mα . We also denote the complex conjugate of V β
i by V β̄

i . The complex conjugation

for vector spherical harmonics has the effect of changing the sign of mβ and multiplying

by (−1)mβ+1. The scalar spherical harmonics are an orthonormal basis of functions on S2,
∫

S2

SαSβ̄ = δαβ . (3.2)

In terms of these spherical harmonics, we can define

Cαβγ =

∫

S2

Sα~V β · ~∇Sγ ,

Dαβγ =

∫

S2

~V α · ~V βSγ ,

Eαβγ =

∫

S2

(~∇× ~V α) · (~V β × ~V γ) (3.3)

They appear as effective couplings of various interaction terms in the pure Yang Mills

Lagrangian. These integrals can be computed explicitly using properties of SU(2). We

will list the expressions for C, D and E in the appendix. Note that C is antisymmetric

in α and γ, D is symmetric in α and β, and E is antisymmetric in β and γ. Using these

expressions, the quadratic part of the action for pure Yang Mills theory on the two sphere

becomes

S2 =

∫
dtTr

(
1

2
Aᾱ(−D2

τ + jα(jα + 1))Aα +
1

2
aᾱjα(jα + 1)aα + c̄ᾱjα(jα + 1)cα

)
. (3.4)

The cubic interactions are

S3 = gYM

∫
dtTr (ic̄ᾱ[Aγ , cβ ]Cᾱγβ + 2iaαAγaβCαγβ

−i[Aα,DτA
β ]aγDαβγ − iAαAβAγEαβγ), (3.5)
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and the quartic interactions are given by

S4 = g2
YM

∫
dtTr

(
− 1

2
[aα,Aβ ][aγ ,Aδ ]

(
Dβλ̄αDδλγ +

1

jλ(jλ + 1)
Cαβλ̄Cγδλ

)
(3.6)

−1

2
AαAβAγAδ

(
Dαγλ̄Dβδλ − Dαδλ̄Dβγλ

))
.

3.2 Effective vertices

Since the action is quadratic in a and c, these may be integrated out explicitly to give

additional effective vertices. As discussed in detail in [1], we have two types of effective

vertices. The A type vertices arise from loops of a and c. The B type vertices are from open

strings of a’s containing two vertices linear in a and some number of quadratic a vertices.

Both involve divergences proportional to δ(0). As for the 3+1 dimensional theory on S3, all

divergent contributions proportional to δ(0) cancel. In particular the contributions from the

a and c loops completely cancel out with the divergent parts in the B type effective vertices.

We thus have only the non-divergent contributions from the latter. Computationally, we

will keep only the vertices appearing in the Lagrangian above which contain no temporal

component a and ghosts c. In addition, we will also have the second type of effective

vertices, but can ignore any contributions proportional to δ(0) arising from contractions of

∇τAs in these. The B type vertices are

B4 =
g2
YM

2

Dα1β1γDα2β2γ̄

jγ(jγ + 1)
Tr ([Aα1 ,DτAβ1 ][Aα2 ,DτAβ2 ]),

B5 = −ig3
YM

Dα1β1λC λ̄γσ̄Dα2β2σ

jλ(jλ + 1)jσ(jσ + 1)
Tr ([Aα1 ,DτAβ1 ][Aγ , [Aα2 ,DτAβ2]]),

B6 =
g4
YM

2

(
3

Dα1β1σC σ̄γ1τC τ̄γ2λDα2β2λ̄

jλ(jλ + 1)jσ(jσ + 1)jτ (jτ + 1)
+

Dα1β1σDγ1λσ̄Dγ2λ̄τ̄Dα2β2τ

jσ(jσ + 1)jτ (jτ + 1)

)

Tr ([[Aα1 ,DτAβ1],Aγ1 ][[Aα2 ,DτAβ2 ],Aγ2 ]). (3.7)

The relevant diagrams contributing to the vacuum energy at one, two and three loops

are shown in figure 2. They are the same as those in 3+1 Yang-Mills theory on S3. The B

type vertices are denoted by circles.

3.3 Propagators

The propagators from the quadratic part of the action are

〈c̄ᾱ
ab(t)c

β
cd(t

′)〉 =
1

Lα
δαβδ(t − t′)δadδcb, (3.8)

〈aα
ab(t)a

β
cd(t

′)〉 =
1

Lα
δαβ̄δ(t − t′)δadδcb, (3.9)

〈Aα
ab(t)A

β
cd(t

′)〉 = δαβ̄∆ad,cb
jα

(t − t′), (3.10)

〈DτAα
ab(t)A

β
cd(t

′)〉 = −〈Aα
ab(t)DτAβ

cd(t
′)〉 = δαβ̄Dτ∆

ad,cb
jα

(t − t′), (3.11)

〈DτAα
ab(t)DτAβ

cd(t
′)〉 = δαβ̄δ(t − t′)δadδcb − δαβ̄L2

α∆ad,cb
jα

(t − t′), (3.12)
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One loop:

Two loops

Three loops

2a 2b 2c

3a

3b 3c

3d

3e 3f

3g

3h

3i
3j

3k

3l

3m
3n

1a

Figure 2: The diagrams contributing to the free energy up to 3-loop order. In this figure we

present a particular planar form for each diagram, but in some cases the same diagram may also

be drawn in the plane in different ways.

where the (adjoint ⊗ adjoint)-valued function ∆ja(t) solves

(−D2
τ + jα(jα + 1))∆jα(t) = δjα(t) (3.13)

explicitly on [0, β),

∆ad,cb
ja

(t) =
eiαt

2La

(
e−Lat

1 − eiαβe−Laβ
− eLat

1 − eiαβeLaβ

)
(3.14)

where La = (ja(ja + 1))1/2 and α is short for αad ⊗ 1cb − 1ad ⊗ αcb. The quantity that will

appear in computation is ∆ja(t1 − t2) where t1 and t2 range between 0 and β so that the

argument of ∆ja(t) takes value between −β and β. What we will use in computation are

the full propagators:

∆ja(t) = Θ(t)
1

2La

(
e(iα−La)t

1 − eiαβe−Laβ
+

e(iα+La)(t−β)

1 − e−iαβe−Laβ

)

+Θ(−t)
1

2La

(
e(iα−La)(t+β)

1 − eiαβe−Laβ
+

e(iα+La)t

1 − e−iαβe−Laβ

)
(3.15)

Dt∆ja(t) = Θ(t)
1

2

(
− e(iα−La)t

1 − eiαβe−Laβ
+

e(iα+La)(t−β)

1 − e−iαβe−Laβ

)

+Θ(−t)
1

2

(
− e(iα−La)(t+β)

1 − eiαβe−Laβ
+

e(iα+La)t

1 − e−iαβe−Laβ

)
(3.16)
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3.4 Two loops

In this section, we will compute the coefficients C1,1,−2 from the two loop diagrams. The two

loop diagrams contributing to the effective potential are shown in figure 2. In particular, we

will only need to extract the coefficients multiplying trUtrUtrU †2 + trU †trU †trU2 in each

diagram. Fortunately, these coefficients turn out to be non-divergent. No regularizations

are required for them. The two loop diagrams can be computed to give

• 2a:

F2a =
∑

m′s,jγ

−βg2
YM

2
(DαβγDᾱβ̄γ̄ − DαᾱγDββ̄γ̄)△jα(0, αab)△jβ

(0, αbc) (3.17)

• 2b:

F2b =
∑

m′s

βg2
YM

2

∫
dt△ab,bc

jα
(t)△cb,de

jβ
(t)△ed,ba

jγ
(t)(−EαβγEᾱβ̄γ̄ + 2EαβγEβ̄ᾱγ̄) (3.18)

• 2c:

F2c =
∑

m′s

βg2
YM

DαβγDᾱβ̄γ̄

jγ(jγ + 1)
× (3.19)

×(Dt△jα(0, αab)Dt△jβ
(0, αac) + jβ(jβ + 1)△jα(0, αab)△jβ

(0, αac))

We have used the notation △jα(0, αab) to signal that the propagator participates in both the

a and b index loop in the sense αa ⊗1b−1a⊗αb. We isolate the coefficient of trUtrUtrU †2

in each of the above and get:

• 2a:

βgYM2

∑

jα,jβ

(2jα + 1)(2jβ + 1)

16π2

e−β(Lα+Lβ) + e−β(Lα+2Lβ) + e−β(2Lα+Lβ)

4(jα(jα + 1)(jβ(jβ + 1))1/2
(3.20)

• 2b:

β
g2
YM

2

∑

jα,jβ,jγ

(−Ã2(jβ , jγ , jα) − 2Ã(jβ , jγ , jα)Ã(jα, jγ , jβ))
1

8LαLβLγ
×

×
[

1

Lα + Lβ + Lγ
(e−(Lβ+2Lγ)β + e−(Lα+2Lβ)β + e−(Lγ+2Lα)β

+e−(2Lα+Lβ)β + e−(2Lβ+Lγ)β + e−(2Lγ+Lα)β)

+
(e−(Lβ+2Lγ)β − e−(Lα+Lγ)β)

Lα − Lβ − Lγ
+

(e−(2Lα+Lγ)β − e−(Lα+Lβ)β)

−Lα + Lβ − Lγ

+
(e−(Lα+2Lβ)β − e−(Lβ+Lγ)β)

−Lα − Lβ + Lγ
+

(e−(Lα+Lγ)β − e−(2Lα+Lβ)β)

Lα + Lβ − Lγ

+
(e−(Lβ+Lγ)β − e−(Lα+2Lγ)β)

Lα − Lβ + Lγ
+

(e−(Lα+Lβ)β − e−(2Lβ+Lγ)β)

−Lα + Lβ + Lγ

]
(3.21)
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• 2c:

βg2
YM

∑

jα,jβ ,jγ

R1(jα, jβ , jγ)

jγ(jγ + 1)

[
1

4
[(e−β(Lα+Lβ) − e−β(Lα+2Lβ) − e−β(2Lα+Lβ)) + (3.22)

(
jβ(jβ + 1)

jα(jα + 1)

)1/2

(e−β(Lα+Lβ) + e−β(Lα+2Lβ) + e−β(2Lα+Lβ))

]]

To obtain the above expressions, we have used several properties of the scalar and vec-

tor spherical harmonics. These properties as well as the definitions of Ã(jβ , jγ , jα),

R1(jβ , jγ , jα) are listed in the appendix. We will numerically evaluate the momentum

sums. The results are:

Diagram Value

2a 0.000609

2b -0.013068

2c 0.00346

With these values we obtain:

−βcC1,1,−2(βc)
2

(1
2 − C2,−2(βc))

= −0.000816. (3.23)

3.5 Three loops

To determine the order of the phase transition we will also need the coefficient C1,1,−1,−1

from the three loop diagrams. The three loop diagrams contributing to the effective po-

tential are the same as those in 3+1 dimension. We will now list the expressions for the

three loop diagrams. We will use the notation

Êabc ≡ Eabc + Ebca + Ecab, (3.24)

which is totally antisymmetric in its indicies.

We find the following expressions for the diagrams

• 3a:

F3a = −βg4
YM

2
(DαγλDᾱδλ̄Dβδ̄τDβ̄γ̄τ̄−2DαᾱλDγδλ̄Dβγ̄τDβ̄δ̄τ̄ +DαᾱλDγδλ̄Dββ̄τDγ̄δ̄τ̄ )

∫
dt ∆jα(0, αab)∆jγ(t, αca)∆j∂

(t, αac)(∆jβ
(0, αad)+∆jβ

(0, αdc)), (3.25)

• 3b:

F3b = βg4
YM(DαγλDᾱδλ̄ − DαᾱλDγδλ̄)

Dγ̄βρDδ̄β̄ρ̄

jρ(jρ + 1)
(3.26)

{
∆jα(0, αab)(Dτ∆jβ

(0, αad) + Dτ∆jβ
(0, αdc))

∫
dt (Dτ∆jγ (t, αac)∆jδ

(t, αca) − ∆jγ(t, αac)Dτ∆jδ
(t, αca))

+∆jα(0, αab)(∆jβ
(0, αad) + ∆jβ

(0, αdc))∫
dt (jβ(jβ + 1)∆jγ (t, αac)∆jδ

(t, αca) − Dτ∆jγ (t, αac)Dτ∆jδ
(t, αca))

}
,
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• 3c:

F3c = −βg4
YM

2

DαγλDᾱδλ̄Dγ̄βρDδ̄β̄ρ̄

jλ(jλ + 1)jρ(jρ + 1)

∫
dt(∆jβ

(0, αad) + ∆jβ
(0, αdc)) ×

×{(jα(jα+1)jβ(jβ +1+jγ(jg+1)jδ(jδ+1))∆jα(0, αab)∆jδ
(t, αac)∆jγ (t, αca)

−jβ(jβ + 1)Dτ∆jγ(t, αca)(4Dτ ∆jα(0, αab)∆jδ
(t, αac)

+∆jα(0, αab)Dτ∆jδ
(t, αac)) − 2jδ(jδ + 1)∆jα(0, αab)∆jδ

(0, αac)}

+

∫
dt(Dτ∆jβ

(0, αad) + Dτ∆jβ
(0, αdc))

{
jγ(jγ +1)∆jγ(t, αca)(4Dτ ∆jδ

(t, αac)∆jα(0, αab)+2∆jδ
(t, αac)Dτ∆jα(0, αab))

−2Dτ∆jα(0, αab)Dτ∆jδ
(t, αac)Dτ∆jγ(t, αca)

−2(Dτ∆jα(0, αab)∆jδ
(0, αac) + 2∆jα(0, αab)Dτ∆jδ

(0, αac))} , (3.27)

• 3d:

F3d = −βg4
YM

4
DαγλDβδλ̄Dᾱγ̄ρDβ̄δ̄ρ̄

∫
dt∆jα(t, αab)∆jβ

(t, αbc)(2∆jγ (t, αcd)∆jδ
(t, αda)

+∆jδ
(t, αcd)∆jγ(t, αda))

−βg4
YM

4
DαβλDγδλ̄Dγ̄β̄ρDᾱδ̄ρ̄

∫
dt∆jα(t, αab)∆jβ

(t, αbc)(∆jγ (t, αcd)∆jδ
(t, αda)

−4∆jδ
(t, αcd)∆jγ (t, αda)), (3.28)

• 3e:

F3e = βg4
YM(2DαδλDβγλ̄ − DαβλDγδλ̄ − DαγλDβδλ̄)

Dγ̄δ̄ρDᾱβ̄ρ̄

jρ(jρ + 1)∫
dt

{
Dτ∆jα(t, αba)∆jβ

(t, αad)∆jγ(t, αcb)Dτ∆jδ
(t, αdc))

−∆jα(t, αba)Dτ∆jβ
(t, αad)∆jγ (t, αcb)Dτ∆jδ

(t, αdc))
}

, (3.29)

• 3f:

F3f = −βg4
YM

2

DαγλDβδλ̄Dᾱγ̄ρDβ̄δ̄ρ̄

jλ(jλ + 1)jρ(jρ + 1)

[
4∆jα(0, αab)Dτ∆jδ

(0, αcd)Dτ∆jβ
(0, αda)

−2(jβ(jβ + 1) + jδ(jδ + 1))∆jα(0, αab)∆jδ
(0, αcd)∆jβ

(0, αda)

+

∫
dt

{
∆jα(t, αab)∆jγ (t, αbc)∆jδ

(t, αcd)∆jβ
(t, αda)

jγ(jγ + 1)(jδ(jδ + 1) + jβ(jβ + 1))

+2Dτ∆jα(t, αab)Dτ∆jγ(t, αbc)Dτ∆jδ
(t, αcd)Dτ∆jβ

(t, αda)

−4jγ(jγ + 1)∆jα(t, αab)∆jγ (t, αbc)Dτ∆jδ
(t, αcd)Dτ∆jβ

(t, αda)

}]

−βg4
YM

2

DαβλDγδλ̄Dᾱγ̄ρDβ̄δ̄ρ̄

jλ(jλ + 1)jρ(jρ + 1)

[
4Dτ∆jα(0, αab)Dτ∆jγ(0, αbc)∆jβ

(0, αda)
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−2jα(jα + 1)∆jα(0, αab)∆jγ(0, αbc)∆jβ
(0, αda)

−2∆jα(0, αab)Dτ∆jγ (0, αbc)Dτ∆jβ
(0, αda)r (3.30)

+

∫
dt

{
Dτ∆jα(t, αab)Dτ∆jγ (t, αbc)Dτ∆jδ

(t, αcd)Dτ∆jβ
(t, αda)

+jα(jα + 1)jδ(jδ + 1)(∆jα(t, αab)∆jγ (t, αbc)∆jδ
(t, αcd)∆jβ

(t, αda)

+2jδ(jδ + 1)(∆jα(t, αab)Dτ∆jγ (t, αbc)∆jδ
(t, αcd)Dτ∆jβ

(t, αda)

−4(jδ + 1)2Dτ∆jα(t, αab)Dτ∆jγ(t, αbc)∆jδ
(t, αcd)∆jβ

(t, αda)

}]
,

• 3g:

F3g = βg4
YMÊαδρÊγβρ̄(Dᾱγ̄λDβ̄δ̄λ̄ − 1

2
Dᾱβ̄λDγ̄δ̄λ̄ − 1

2
Dᾱδ̄λDβ̄γ̄λ̄) (3.31)

∫
dtdt′∆jβ

(t′, αda)∆jγ (t′, αcd)∆jδ
(t, αbc)∆jα(t, αab)∆jρ(t

′ − t, αac),

• 3h:

F3h = βg4
YM

1

jλ(jλ + 1)
DαγλDβδλ̄Êᾱγ̄ρÊ δ̄β̄ρ̄ (3.32)

∫
dt1dt2 Dτ∆jα(t1, αab)∆jγ (t1, αbc)∆jρ(t1 − t2, αca)

(∆jδ
(t2, αcd)Dτ∆jβ

(t2, αda) − Dτ∆jδ
(t2, αcd)∆jβ

(t2, αda))

+βg4
YM

1

jλ(jλ + 1)
DαβλDγδλ̄Êᾱγ̄ρÊ δ̄β̄ρ̄

∫
dt1dt2 Dτ∆jα(t1, αab)∆jβ

(t2, αda)∆jρ(t1 − t2, αca)

(∆jδ
(t2, αcd)Dτ∆jγ(t1, αbc) − Dτ∆jδ

(t2, αcd)∆jγ (t1, αbc)),

• 3i:

F3i = −βg4
YM

4
ÊαβρÊᾱσβ̄Êσ̄δγÊ δ̄ρ̄γ̄

∫
dt1dt2dt3∆jα(t1 − t2, αab)∆jβ

(t1 − t2, αbc)∆jγ(t3, αcd)

∆jδ
(t3, αda)∆jρ(t1 − t3, αca)∆jσ(t2, αac), (3.33)

• 3j:

F3j = βg4
YM(DαρλDβρ̄λ̄ − Dρρ̄λDαβλ̄)ÊᾱτσÊβ̄σ̄τ̄ (3.34)∫
dtdt′∆jρ(0, αab)∆jβ

(t − t′, αac)∆jσ(t′, αad)∆jα(t, αca)∆jτ (t′, αdc),
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• 3k:

F3k = βg4
YM

1

jλ(jλ + 1)
DαβλDᾱγλ̄Êβ̄ρσÊγ̄σ̄ρ̄

∫
dt1dt2 ∆jρ(t1 − t2, αcd)∆jσ(t1 − t2, αda)

{
2Dτ∆jα(0, αab)∆jβ

(t1, αac)Dτ∆jγ (t2, αca)

+∆jα(0, αab)Dτ∆jβ
(t1, αac)Dτ∆jγ(t2, αca)

−jα(jα + 1)∆jα(0, αab)∆jβ
(t1, αac)∆jγ(t2, αca)

}
, (3.35)

• 3l:

F3l = −βg4
YM

12
Êαβτ Êβ̄γρÊγ̄ᾱσÊρ̄σ̄τ̄

∫
dt1dt2dt3∆jα(t2 − t3, αab)∆jβ

(t3 − t1, αac)∆jγ (t1 − t2, αad)

∆jρ(t1, αdc)∆jσ(t2, αbd)∆jτ (t3, αcb), (3.36)

• 3m:

F3m = 4βg4
YM

DαβλC λ̄ᾱρDγδρ̄Êβ̄γ̄δ̄

jλ(jλ + 1)jρ(jρ + 1)
(3.37)

∫
dt(Dτ∆jα(0, αab)∆jβ

(t, αca) − ∆jα(0, αab)Dτ∆jβ
(t, αca))

(∆jγ (t, αdc)Dτ∆jδ
(t, αad) − Dτ∆jγ(t, αdc)∆jδ

(t, αad))

+2βg4
YM

DαδλC λ̄βρDγδ̄ρ̄Êᾱγ̄β̄

jλ(jλ + 1)jρ(jρ + 1)∫
dt

{
Dτ∆jα(t, αab)∆jβ

(t, αbd)Dτ∆jγ (t, αda)∆jδ
(0, αca)

+2Dτ∆jα(t, αab)∆jβ
(t, αbd)∆jγ(t, αda)Dτ∆jδ

(0, αca)

−jδ(jδ + 1)∆jα(t, αab)∆jβ
(t, αbd)∆jγ(t, αda)∆j∂

(0, αca)
}

,

• 3n:

F3n = βg4
YM

DαγρDβγ̄σ

jρ(jρ + 1)jσ(jσ + 1)
× (3.38)

×
(

3
C ρ̄ᾱλC λ̄β̄σ̄

jλ(jλ + 1)
+ 3

C ρ̄β̄λC λ̄ᾱσ̄

jλ(jλ + 1)
+ Dᾱλ̄ρDβ̄λσ̄ + Dᾱλ̄σ̄Dβ̄λρ̄

)

{
Dτ∆jα(0, αcb)∆jγ (0, αac)Dτ∆jβ

(0, αad)

+2Dτ∆jα(0, αcb)Dτ∆jγ (0, αac)∆jβ
(0, αad)

−jγ(jγ + 1)∆jα(0, αcb)∆jγ(0, αac)∆jβ
(0, αad)

}

−βg4
YM

DαγρDβγ̄σ

jρ(jρ + 1)jσ(jσ + 1)

(
3
C ρ̄ᾱλC λ̄β̄σ̄

jλ(jλ + 1)
+ Dᾱλ̄ρDβ̄λσ̄

)
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{
Dτ∆jα(0, αab)∆jγ (0, αac)Dτ∆jβ

(0, αad)

+2Dτ∆jα(0, αab)Dτ∆jγ (0, αac)∆jβ
(0, αad)

+jγ(jγ + 1)∆jα(0, αab)∆jγ(0, αac)∆jβ
(0, αad)

}

−βg4
YM

DαγρDᾱγ̄σ

jρ(jρ + 1)jσ(jσ + 1)

(
3
C ρ̄βλC λ̄β̄σ̄

jλ(jλ + 1)
+ Dλβρ̄Dλ̄β̄σ̄

)

{
2Dτ∆jα(0, αab)Dτ∆jγ (0, αad)∆jβ

(0, αbc)

+(jα(jα + 1) + jγ(jγ + 1))∆jα(0, αab)∆jγ(0, αad)∆jβ
(0, αbc)

}
.

Again, we will only need to extract the coefficients multiplying trUtrUtrU †trU † in each

diagram. These coefficients turn out to be non-divergent as well. No regularizations are

required for them. At the three loop level, the Feynman diagrams have very complicated

expressions. However, they all have the following strucure:

∑

j′s,m′s

Gj′s,m′sIj′s(trU, trU †)). (3.39)

where Gj′s,m′s are the group theory factors coming from the vertices in each diagram.

Ij′s(trU, trU †) come from the propagators. We will expand Ij′s(trU, trU †) in powers of

trU , trU † to extract the coefficients of trUtrUtrU †trU †. Fortunately, the relevant terms in

Ij′s(trU, trU †) are very similar to those in 3+1 dimensions, which have been computed [7].

To apply them, we only need to replace the masses of the propagators (jα + 1)23+1 →
(jα(jα + 1))2+1. With these we can evaluate the angular momentum sums numerically.

The results are

Diagram Value Diagram Value

3a -0.000182 3b 0.000008

3c 0.000432 3d -0.000187

3e -0.0001396 3f 0.0001399

3g 0.0021095 3h 0.00685

3i -0.005715 3j 0.00197

3k 0.000779 3l -0.00195

3m 0.000752 3n 0.001682

The total three loop contribution is

C1,1,−1,−1 = 0.001237 (3.40)

We thus obtain the coefficient bc = 0.00503 > 0. Thus, we conclude that the deconfine-

ment transition is second order, followed at a slightly higher temperature by a continuous

transition in which the eigenvalue distribution develops a gap.

4. High temperature limit

In this section, we consider the behavior of the theory at general values of the spatial radius

in the limit where the temperature is very large (compared with either the inverse spatial
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radius or the gauge coupling). In this limit, the Kaluza-Klein modes on the thermal circle

become very massive, and the theory is well described by an effective two-dimensional

theory on S2. This theory contains a two-dimensional gauge field together with an adjoint

scalar coming from the zero mode of A0 on the thermal circle. As in the more familiar 3+1

dimensional case, this scalar receives a Debye mass at one loop, corresponding to screening

of electric charge. In our case, the mass was calculated in [8] to be

m2 ∼ λT ln

(
T

λ

)
,

where the logarithm arises from a resummation of infrared divergent diagrams.2 For T ≫
λ, this mass is much larger than the scale M ∼

√
λ2 =

√
λT associated with the two-

dimensional Yang-Mills theory, so the model should be effectively described by pure two-

dimensional Yang-Mills theory on S2 (as long as the sphere radius is larger than m−1).

This theory has a third-order phase transition at R ∼ λ
− 1

2

2 ≫ m−1 [3], so we conclude that

our phase diagram has an additional phase transition line coming from large temperature

along the curve

TR ∼ 1/(λR) .

An important question is whether this transition remains sharp for large but finite values

of the temperature or whether it becomes smoothed out, either for any non-infinite value

of the temperature (i.e. any finite A0 mass) or below some particular temperature. For

high temperatures, the question should correspond to asking about the fate of the phase

transition in the two-dimensional theory when the mass of an adjoint scalar is reduced from

infinity. Unfortunately, even this question seems difficult to approach since the theory is

no longer solvable with the adjoint scalar.

The persistence of a sharp phase transition would be guaranteed if there were some

order parameter associated with the transition. In the pure two-dimensional Yang-Mills

theory on S2, there is in some sense an order parameter for the phase transition, namely

the eigenvalue distribution for a maximal area Wilson loop which divides the sphere into

two equal areas.3 This eigenvalue distribution is gapped for radii less than the critical

radius, but ungapped above it [4]. Away from infinite temperature (where the full theory

is on S2 ×S1), it will presumably no longer be true that the expectation value of a spatial

Wilson loop will depend only on the enclosed area, so the extension of the order parameter

to finite temperatures is ambiguous. We could for example choose to focus on the Wilson

loop around the equator of the S2, and it will certainly be true that the full phase diagram

will divide into regions for which the eigenvalue distribution for this Wilson loop is gapped

2Strictly speaking, there are no infrared divergences since we are working on a spatial sphere. Neverthe-

less, this infinite volume result should be valid as long as the geometrical infrared cutoff scale 1/R is smaller

than the dynamical infrared cutoff scale m. In this case, we are still required to resum a large number of

(finite) diagrams to get the leading contribution to the mass. For smaller radii, the geometrical infrared

cutoff dominates and the effective scalar mass will be given by the one-loop contribution.
3The precise shape of the loop is unimportant since the theory is invariant under area-preserving diffeo-

morphisms.
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or ungapped, but it isn’t clear that the boundary of this region should correspond to some

non-smooth behavior of the free energy away from the infinite temperature limit.

If the high-temperature phase transition does remain sharp, an intriguing possibility

is that it connects on to the third order phase transition line that originates at the critical

temperature in the small volume limit (as in figure 6b). Indeed, in the limits where we

have analytic control, both of these phase transitions are third-order transitions associated

with gapping for the eigenvalue distribution of Wilson lines. To investigate whether the

two transitions might be the same, one approach would be to study the behavior of the

eigenvalue distribution for the Polyakov loop in the vicinity of the high-temperature transi-

tion. This distribution should be close to a delta function in this high-temperature regime,

but could still be either gapped or ungapped depending on how the eigenvalue distribution

falls off away from the peak. A transition between these two possibilities may show up as

a change in behavior for the eigenvalue distribution of the massive adjoint scalar in the

effective two-dimensional theory, for example from a strictly localized distribution to one

with an exponential tail. Unfortunately, we have not been able to determine whether such

a transition occurs, so we leave it as a question for future work to determine whether the

two third-order transitions are connected.

5. Possible phase diagrams

We have seen that for small sphere volumes, our gauge theory undergoes a second order

deconfinement transition followed by a third order gapping transition as the temperature

is increased. We would now like to understand in general the simplest possibilities for what

happens to this behavior as the spatial volume is increased.

First, we expect of course that the deconfinement transition extends all the way to

large volume, where the transition temperature should be of order λ. The simplest log-

ical possibility is that the qualitative behavior we found is unchanged as we go to large

volume. This would mean a second order deconfinement transition at large volume. By

the conjecture of Svetitsky and Yaffe [9], the critical behavior should then be the same

as a two-dimensional spin model invariant under the same global symmetry, in this case

ZN→∞ ∼ U(1). This corresponds to an XY model, for which the transition should be of

Kosterlitz-Thouless type.

However, if the expected extrapolation to large N of the lattice results mentioned in

the introduction holds, the infinite volume transition should be first order for large N , so

the Svetitsky-Yaffe predictions would not apply. In this case, which we will assume for the

remainder of the section, there must be a critical sphere radius at which the deconfinement

transition changes from second order to first order.

We will now argue that there are two different types of behavior possible at the critical

radius. To understand this, consider the effective potential for the eigenvalue distribution

evaluated at the deconfinement transition temperature for various values of the radius.

Where the transition is second order, the potential at the transition temperature has a

global minimum for the uniform eigenvalue distribution, with a vanishing second derivative

along some direction. The effective potential develops a negative second derivative along
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this direction as we go above the transition temperature, and the global minimum smoothly

moves away from the uniform eigenvalue distribution. There are two qualitatively different

effects that can give rise to a change to first order behavior:

First, the effective potential evaluated at the transition temperature might develop a

second global minimum at a point away from the uniform distribution for some value of

the radius. In this case, if we move further along the line where the uniform distribution is

marginally stable (dotted line in figure 3), this new minimum will (generically) become the

global minimum, so we must have a first order transition to this new minimum occurring

at some lower temperature. Thus, below this critical radius, the deconfinement transition

is second order and follows the boundary along which a local instability develops around

the uniform distribution. Above the critical radius, the transition is first order and follows

the boundary along which we have two global minima. Generically this line of two minima

will not terminate at the critical radius but will continue to smaller radii above the decon-

finement temperature. Even at these smaller radii, it represents a phase transition, since

below the line the minimum near the uniform distribution should be the global minimum,

while above the line, the other minimum will be the global minimum. Thus, we have a

triple point at the critical temperature and critical radius separating three distinct phases.

If the second minimum is at the boundary of configuration space, the higher temperature

transition will correspond to a gapping transition, but in this case a first order one, since

the eigenvalue distribution jumps discontinuously. The phase diagram in the vicinity of

the triple point is sketched in figure 3.

We now explain the other possible behavior near the critical radius (depicted in figure

4). If we follow the curve along which a single marginally stable direction exists (with all

other directions stable), it may happen that this direction becomes marginally unstable at

some point (e.g. if the fourth derivative of the potential in the marginal direction switches

from positive to negative). Such a point is known as a tricritical point. In this case, if we

continue along the line where we have a single marginal direction, the global minimum of

the potential will shift gradually away from the uniform distribution. The deconfinement

transition then no longer coincides with the curve along which the uniform distribution

becomes locally unstable, but occurs at some lower temperature where the minimum at

the origin (which exists everywhere below the marginal stability line) takes the same value

as the new nearby minimum. The deconfinement transition corresponds to a jump from

the minimum at the origin (i.e. the uniform distribution) to the nearby minimum. It is

therefore first order but with a latent heat which vanishes as we approach the tricritical

point, where the two minima in the effective potential merge. Unlike the other scenario,

there is no other phase boundary emerging from the point at which the deconfinement

transition switches behavior, since the line along which we have two equivalent minima

simply ends at the tricritical point. In the present case, the first order deconfinement

transition either to the left or right of the tricritical point is certainly to an ungapped

phase.

Both of these scenarios are realized in a simple toy model for a complex order parameter

w with effective potential

Seff = a|w|2 + b|w|4 + c|w|6
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Figure 3: Phase diagram in the vicinity of the deconfinement transition when we have a triple

point at the critical radius, with sketches of the effective potential in each region. Deconfinement

transition switches from second order (dashed line) to first order (solid line). Dotted line is not a

phase transition but represents boundary in deconfined phase of region for which local minimum

exists at the origin.

and a boundary |w| = 1 for the configuration space. The phase diagram for this toy model

as a function of the parameters a,b is shown in figure 5 for the two cases c < 0 and c > 0.

In the first case, the switch from second order to first order behavior for the transition

corresponds to a triple point, while in the second case, it corresponds to a tricritical point.

Note that in the case c > 0, only the details of the potential near w = 0 are important, so

any higher order terms can be ignored (so long as they do not give rise to a lower minimum).

Thus, the behavior of the toy model in the vicinity of the tricritical point should precisely

coincide with the behavior of the Yang-Mills theory if we have a tricritical point at the

critical radius, since the effective action for u1 will be of this form, with higher order terms

that we can ignore.

We can now comment on the possible forms for the full phase diagram, assuming that

the large-volume transition is first order, so that there exists a change of behavior at some
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Figure 4: Phase diagram near the critical radius in the case when we have a tricritical point,

with sketch of the effective potential in each region. Deconfinement transition switches from second

order (dashed line) to first order (solid line). Dotted line is not a phase transition but represents

boundary in deconfined phase of region for which local minimum exists at the origin.

critical radius. If the effective potential is such that we have a triple point, the simplest

possibility would be that the additional phase boundary coming from the tricritical point

corresponds to a gapping transition, so that this phase boundary would connect with the

third order gapping transition emerging from the zero-volume critical temperature. This

requires there to be some radius at which the gapping transition switches from third order

to first order. In this scenario, the full phase diagram would appear as in figure 6a. The

fate of the high-temperature Douglas-Kazakov transition is unclear, though as we have

discussed, it is possible that this phase boundary simply ends at some high temperature.

In the case where the effective potential gives rise to a tricritical point, the gapping

phase boundary could either extend up to infinite temperature and be absent in the large

volume limit (e.g. in the scenario where it connects with the Douglas-Kazakov transition

at high temperatures), extend to large volume such that the first order deconfinement

transition there would be followed by a gapping transition at some higher temperature, or
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b

a

b

a

III

I

II
II

III

I

c > 0c < 0

Figure 5: Phase diagram for toy model effective potential for c < 0 and c > 0 exhibiting the triple

point and tricritical point behaviors. Phases I, II, and III correspond to having the global minimum

at the origin, in the bulk of the configuration space away from the origin, and at the boundary of

configuration space respectively. Solid and dashed lines represent first order and second order phase

transitions respectively.

end somewhere on the deconfinement phase boundary to the right of the tricritical point (as

in the toy model for c > 0). These possibilities are shown in figure 6 b,c, and d respectively.

Further lattice studies should help distinguish between the possibilities in figure 6. In

particular, while the distinction between gapped and ungapped eigenvalue distributions

strictly exists only in the large N limit, recent studies at relatively large but finite values

of N have provided clear suggestions of gapping transitions for eigenvalue distributions

of spatial Wilson loops (see, for example [10]). Thus, it should be possible to determine

whether the deconfinement transition at large volume is to a gapped or ungapped eigen-

value distribution, and in the latter case, whether there is an additional gapping transition

at higher temperature (as in figure 6c). On the other hand, distinguishing between pos-

sibilities a) and d) may be difficult, since they differ only at intermediate values of the

radius/coupling.

6. Conclusions

The main result of this paper is that pure large N two-dimensional Yang-Mills theory

has a second order deconfinement transition at small spatial volume, with a third-order

gapping transition at some higher temperature. This is is a qualitatively different behavior

from pure Yang-Mills theory in 3+1 dimensions, and provides the first example of a gauge

theory with a single-trace Lagrangian in more than two space-time dimensions for which

the deconfinement transition is second order at small volume, and which therefore displays

three distinct phases.

If the same behavior exists for some large N theory with a controllable gravity dual,

it would be fascinating to understand what the new ungapped phase corresponds to on
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Figure 6: Simplest possible phase diagrams for large N pure Yang-Mills theory on S2 as a function

of sphere radius R and temperature T , assuming a first order deconfinement transition at large

volume. Solid, dashed, and dotted lines correspond to first, second, and third order transitions

respectively.

the gravity side. Generally, the deconfined phase of a large N gauge theory corresponds

to a black hole geometry.4 In N = 4 SYM theory at strong coupling, the deconfinement

transition corresponds on the gravity side to a first-order transition between the original

AdS5 × S5 spacetime with a thermal gas of supergravity particles to a large black hole

spacetime [11]. On the other hand, in a theory with an intermediate ungapped phase on

the field theory side, there should be a stable intermediate type of black-hole phase on the

gravity side smoothly connected to both the no black hole phase and the big black hole

phase.

4The argument ([11, 2] ) is that the non-zero expectation value for the Polyakov loop implies that a string

worldsheet whose boundary wraps the thermal circle in the associated Euclidean spacetime can have finite

area, and therefore the thermal circle must be contractible. In the Lorentzian picture, this is associated

with the existence of a horizon.
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A. Spherical harmonics

In this section we set up our conventions for the vector spherical harmonics [12, 13]. The

definition of a vector spherical harmonics is:

V̄JlM =
∑

q

V q
JlM êq =

∑

m,q

Ylmêq(l m 1 q|J M) (A.1)

where the êq are in the spherical tensor basis:

ê+ = − êx + iêy

21/2

ê− =
êx − iêy

21/2

ê0 = êz. (A.2)

The raising and lowering of the vector index q is given by:

VJlM,q = (−1)qV −q
JlM (A.3)

and

V̄ ∗
JlM = (−1)M+J−l+1V̄Jl−M . (A.4)

The vector spherical harmonics can be used to expand any well behaved vector fields

in R3 and they can be categorized into the following orthonormal basis [13]:

P̄JM =
1

(2J + 1)1/2
[−(J + 1)1/2V̄JJ+1M + J1/2V̄JJ−1M ] = r̄YJM

B̄JM =
1

(2J + 1)1/2
[J

(J + 1)1/2

r
V̄JJ+1M + (J + 1)

J1/2

r
V̄JJ−1M ] = ∇YJM

C̄JM = −r̄ × r

(J(J + 1))1/2
B̄JM = −iV̄JJM . (A.5)

The first of the above does not live in the tangent space of the two sphere, while the

second do not contribute to the effective action by gauge fixing. We have the following
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useful expression for V̄JJM following from the last of the above identities:

VJJM,q =
Lq

(J(J + 1))1/2
YJM+q (A.6)

L+ =
−1

21/2
((J − M)(J + M + 1))1/2

= −(−1)J−M

2
((2J + 2)(2J + 1)(2J))1/2

(
J J 1

M −M − 1 1

)

L− =
1

21/2
((J + M)(J − M + 1))1/2

=
(−1)J+M

2
((2J + 2)(2J + 1)(2J))1/2

(
J J 1

−M M − 1 1

)

L0 = M =
(−1)J−M

2
((2J + 2)(2J + 1)(2J))1/2

(
J J 1

M −M 0

)
. (A.7)

B. Effective vertices

As we have seen in section 3, when expended in terms of scalar and vector spherical

harmonics, the Lagrangian for pure Yang-Mills theory on S2×S1 contains effective vertices

that are integrals of products of spherical harmonics. Here we explicitly compute effective

vertices. We will write the results with 3-j symbols:

(
j1 j2 j3

m1 m2 m3

)
= (−1)j1−j2−m3(2j3 + 1)−1/2(j1 m1 j2 m2|j3 − m3). (B.1)

A useful formula for sum of products of three 3-j symbols:

∑

µ1µ2µ3

(−1)l1+l2+l3+µ1+µ2+µ3

(
j1 l2 l3
m1 µ2 −µ3

)(
l1 j2 l3

−µ1 m2 µ3

)(
l1 l2 j3

µ1 −µ2 m3

)

=

(
j1 j2 j3

m1 m2 m3

){
j1 j2 j3

l1 l2 l3

}
. (B.2)

• SSS (given by Gaunt’s formula for associated Legendre polynomials) [13]:

∫

S2

Yl1m1
Yl2m2

Yl3m3
=

(
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

)1/2
(

l1 l2l3
0 0 0

) (
l1 l2 l3
m1 m2 m3

)

= Il1l2l3

(
l1 l2 l3
m1 m2 m3

)
(B.3)
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• VSV, The D vertex

Dα1α2α3 =

∫

S2

V̄l1l1m1
V̄l2l2m2

Yl3m3

=

(
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

)1/2 l3(l3 + 1) − l1(l1 + 1) − l2(l2 + 1)

2(l1(l1 + 1)l2(l2 + 1))1/2

(
l1 l2 l3
0 0 0

) (
l1 l2 l3
m1 m2 m3

)
= R

1/2
1 (l1, l2, l3)

(
l1 l2 l3
m1 m2 m3

)
. (B.4)

Note l1 + l2 + l3 has to be even for nonzero amplitudes.

• SVS, The C vertex

Cα3α2α1 =

∫

S2

∇Yl1m1
)V̄l2l2m2

Yl3m3

=
1

2r

(
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

)1/2

×

×
(

(J + 1)(J − 2l3)(J − 2l2)(J − 2l1 + 1)

l2(l2 + 1)

)1/2

(
l1 − 1 l2 l3

0 0 0

) (
l1 l2 l3
m1 m2 m3

)
= Al1l2l3

(
l1 l2 l3
m1 m2 m3

)
. (B.5)

where J = l1 + l2 + l3 and it has to be odd for non-zero amplitudes.

• (curlV·r)(V×V·r), The E vertex

Eα3α1α2 =

∫

S2

∇× VJ3J3M3
· r̂)(VJ1J1M1

× VJ2J2M2
· r̂)

= −
(

J3(J3 + 1)

J1(J1 + 1)

)1/2

AJ1J2J3

(
J1 J2 J3

M1 M2 M3

)

= ÃJ1J2J3

(
J1 J2 J3

M1 M2 M3

)
. (B.6)

Note since J = J1+J2+J3 has to be odd in order for AJ1J2J3
to be nonzero,

(
J1 J2 J3

M1 M2 M3

)

will pick up a negative sign upon interchanging J1, J2. This suggests ÃJ1J2J3
needs to be

symmetric in J1, J2, which can be checked to be true in our expression.
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C. Summation formulas

The following identities are useful in computing the two loop diagrams.

∑

m′s

DαβγDᾱβ̄γ̄ = R1(jα, jβ , jγ) (C.1)

∑

m′s,jγ

DαβγDᾱβ̄γ̄ =
(2jα + 1)(2jβ + 1)

8π
(C.2)

∑

m′s,jγ

DαᾱγDββ̄γ̄ =
(2jα + 1)(2jβ + 1)

4π
(C.3)

where

R1(l1, l2, l3) =

(
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

)
(l3(l3 + 1) − l1(l1 + 1) − l2(l2 + 1))2

4l1(l1 + 1)l2(l2 + 1)
(

l1 l2 l3
0 0 0

)2

(C.4)

∑

m′s

EαβγEᾱβ̄γ̄ = +Ã2(jβ , jγ , jα)σ(Jα, Jβ , Jγ) (C.5)

∑

m′s

EαβγEβ̄ᾱγ̄ = (−1)Ã(jβ , jγ , jα)Ã(jα, jγ , jβ)σ(Jα, Jβ , Jγ) (C.6)

where Ã(l1, l2, l3) is defined as above. and σ(Jα, Jβ , Jγ), is 1 if its arguments satisfies the

triangle inequality, and is zero otherwise. The presence of σ(Jα, Jβ , Jγ) is just a reminder

that we need to impose the triangle inequality on Jα, Jβ , Jγ at each vertex which is obvious

from the left hand side but is somewhat obscured by the summation.

The following identities are useful in computing the three loop diagrams. Again, a hat

over the indicies means summing over their cyclic permutations.

∑

m

Dααλ = −(−1)JαR
1/2
1 (Jα, Jα, 0)(2Jα + 1)1/2δJλ,0δmλ,0 (C.7)

∑

m′s

DαβγDαβτ = (−1)Jγ
1

(2Jγ + 1)
δJγ ,Jτ R1(α, β, γ) (C.8)

∑

m′s

DαγτDβγτ = (−1)Jα+1 1

(2Jα + 1)
δJα,Jβ

R1(α, γ, τ) (C.9)

∑

m′s

CαǫγCγǫβ = (−1)Jα+1 1

(2Jα + 1)
δJα,Jβ

A(γǫα)A(αǫγ) (C.10)

∑

m′s

EαγǫEǫγβ = (−1)Jα
1

(2Jα + 1)
δJα,Jβ

Ã(γǫα)Ã(γαǫ) (C.11)

∑

m′s

DγταEτγβ = 0 (C.12)

∑

m′s

CαγτDγβτ = 0
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∑

m′s,Jλ,Jτ

DααλDγǫλDγǫτDββτ = (−1)Jα+JβδJγ ,Jǫ(2Jα + 1)1/2(2Jβ + 1)1/2

×R
1/2
1 (α,α, 0)R

1/2
1 (β, β, 0)R1(γ, γ, 0)

= δJγ ,Jǫ

1

16π2
(2Jα + 1)(2Jγ + 1)(2Jβ + 1) (C.13)

∑

m′s,Jλ

DααλDγǫλDβγτDβǫτ = (−1)Jα+JγδJγ ,Jǫ

(2Jα + 1)1/2

(2Jγ + 1)1/2

×R
1/2
1 (α,α, 0)R

1/2
1 (γ, γ, 0)R1(β, γ, τ) (C.14)

∑

m′s

DαγλDαǫλDβǫτDβγτ = δJγ ,Jǫ

1

(2Jγ + 1)
R1(α, γ, λ)R1(β, γ, τ) (C.15)

∑

m′s

DαγλDαγτDǫβλDǫβτ = δJλ,Jτ

1

(2Jλ + 1)
R1(α, γ, λ)R1(ǫ, β, λ) (C.16)

∑

m′s

DαβλDγǫλDβǫτDαγτ = −1
P

j′sR
1/2
1 (α, β, λ)R

1/2
1 (γ, ǫ, λ)R

1/2
1 (β, ǫ, τ)R

1/2
1 (α, γ, τ)

×
{

Jγ Jα Jτ

Jβ Jǫ Jλ

}
(C.17)

∑

m′s,Jλ

DρρλDαβλÊατσÊβστ = −(−1)Jα+JρδJα,Jβ

(2Jρ + 1)1/2

(2Jα + 1)1/2
R

1/2
1 (α,α, 0)R

1/2
1 (ρ, ρ, 0)

×Ã dτσαÃ dστα (C.18)
∑

m′s

CσγρCργτDαβσDαβτ = δJα,Jτ

−1

(2Jτ + 1)
AργτAτγρR1(α, β, τ) (C.19)

∑

m′s

DαβλDαγλÊβǫρÊǫγρ = −δJγ ,Jβ

1

(2Jγ + 1)
Ãdǫρβ

ÃdǫγρR1(α, γ, λ) (C.20)

∑

m′s

ÊγαρÊραǫÊγτβÊβτǫ = δJγ ,Jǫ

1

(2Jγ + 1)
ÃdαργÃdαǫρÃdτβγ

Ãdτǫβ
(C.21)

∑

m′s

DαγρDβǫρÊαβτ Êǫγτ = −(−1)
P

j′sR
1/2
1 (α, γ, ρ)R

1/2
1 (β, ǫ, ρ)Ã dβτα

Ãdγτǫ ×

×
{

Jα Jγ Jρ

Jǫ Jβ Jτ

}
(C.22)

∑

m′s

Êρστ Êαβτ ÊβγρÊγασ = −1
P

j′sÃdστρÃ dβτα
Ãdγρβ

Ã dασγ ×

×
{

Jρ Jσ Jτ

Jα Jβ Jγ

}
(C.23)

∑

m′s

DαγρDβγσCρβτCτασ = −1
P

j′sR
1/2
1 (α, γ, ρ)R

1/2
1 (β, γ, σ)AτβρAσατ ×

×
{

Jα Jγ Jρ

Jβ Jτ Jσ

}
(C.24)
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∑

m′s

ÊαβγCργσDβτσDατρ = −(−1)
P

j′sÃ dβγα
AσγρR

1/2
1 (β, τ, σ)R

1/2
1 (α, τ, ρ) ×

×
{

Jβ Jγ Jα

Jρ Jτ Jσ

}
(C.25)

expressions that are zero:

• in 3h:
∑

m′s

DαγλDβǫλÊαγρÊǫβρ =

δJλ,Jρ

1

(2Jλ + 1)
R

1/2
1 (α, γ, λ)R

1/2
1 (β, ǫ, λ)Ã dγλα

Ãdβλǫ
= 0 (C.26)

• in 3m, 3g:
∑

m′s

DαβλCλαρDγǫρÊβγǫ =

δJβ ,Jρ

1

(2Jρ + 1)
R

1/2
1 (α, ρ, λ)R

1/2
1 (γ, ǫ, ρ)AραλÃdγǫρ = 0 (C.27)

We can use the following to simplify the above expressions:

∑

l3

R1(l1, l2, l3) =
(2l1 + 1)(2l2 + 1)

8π
(C.28)

R
1/2
1 (l1, l1, 0) = (−1)l1+1 (2l1 + 1)1/2

2π1/2
(C.29)
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